Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers

نویسندگان

  • H Westerblad
  • D G Allen
چکیده

Measurements of the intracellular free concentration of Ca2+ ([Ca2+]i) were performed during fatiguing stimulation of intact, single muscle fibers, which were dissected from a mouse foot muscle and loaded with fura-2. Fatigue, which was produced by repeated 100-Hz tetani, generally occurred in three phases. Initially, tension declined rapidly to approximately 90% of the original tension (0.9 Po) and during this period the tetanic [Ca2+]i increased significantly (phase 1). Then followed a lengthy period of almost stable tension production and tetanic [Ca2+]i (phase 2). Finally, both the tetanic [Ca2+]i and tension fell relatively fast (phase 3). The resting [Ca2+]i rose continuously throughout the stimulation period. A 10-s rest period during phase 3 resulted in a significant increase of both tetanic [Ca2+]i and tension, whereas a 10-s pause during phase 2 did not have any marked effect. Application of caffeine under control conditions and early during phase 2 resulted in a substantial increase of the tetanic [Ca2+]i but no marked tension increase, whereas caffeine applied at the end of fatiguing stimulation (tension depressed to approximately 0.3 Po) gave a marked increase of both tetanic [Ca2+]i and tension. The tetanic [Ca2+]i for a given tension was generally higher during fatiguing stimulation than under control conditions. Fatigue developed more rapidly in fibers exposed to cyanide. In these fibers there was no increase of tetanic [Ca2+]i during phase 1 and the increase of the resting [Ca2+]i during fatiguing stimulation was markedly larger. The present results indicate that fatigue produced by repeated tetani is caused by a combination of reduced maximum tension-generating capacity, reduced myofibrillar Ca2+ sensitivity, and reduced Ca2+ release from the sarcoplasmic reticulum. The depression of maximum tension-generating capacity develops early during fatiguing stimulation and it is of greatest importance for the force decline at early stages of fatigue. As fatigue gets more severe, reduced Ca2+ sensitivity and reduced Ca2+ release become quantitatively more important for the tension decline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue.

Fatigue was studied in intact tibialis anterior muscle of anesthetized mice. The distal tendon was detached and connected to a force transducer while blood flow continued normally. The muscle was stimulated with electrodes applied directly to the muscle surface and fatigued by repeated (1 per 4 s), brief (0.4 s), maximal (100-Hz stimulation frequency) tetani. Force declined monotonically to 49 ...

متن کامل

Effects of fatigue on sarcoplasmic reticulum and myofibrillar properties of rat single muscle fibers.

Force decline during fatigue in skeletal muscle is attributed mainly to progressive alterations of the intracellular milieu. Metabolite changes and the decline in free myoplasmic calcium influence the activation and contractile processes. This study was aimed at evaluating whether fatigue also causes persistent modifications of key myofibrillar and sarcoplasmic reticulum (SR) proteins that cont...

متن کامل

The depressive effect of Pi on the force-pCa relationship in skinned single muscle fibers is temperature dependent.

Increases in P(i) combined with decreases in myoplasmic Ca(2+) are believed to cause a significant portion of the decrease in muscular force during fatigue. To investigate this further, we determined the effect of 30 mM P(i) on the force-Ca(2+) relationship of chemically skinned single muscle fibers at near-physiological temperature (30 degrees C). Fibers isolated from rat soleus (slow) and gas...

متن کامل

Effects of congestive heart failure on Ca2+ handling in skeletal muscle during fatigue.

Skeletal muscle weakness and decreased exercise capacity are major symptoms reported by patients with congestive heart failure (CHF). Intriguingly, these skeletal muscle symptoms do not correlate with the decreased heart function. This suggests that CHF leads to maladaptive changes in skeletal muscles, and as reported most markedly in slow-twitch muscles. We used rats at 6 weeks after infarctio...

متن کامل

Slowed Relaxation in Fatigued Skeletal Muscle Fibers of Xenopus and Mouse

Slowing of relaxation is an important characteristic of skeletal muscle fatigue. The aim of the present study was to quantify the relative contribution of altered Ca2+ handling (calcium component) and factors downstream to Ca2+ (cross-bridge component) to the slowing of relaxation in fatigued fibers of Xenopus and mouse. Two types of Xenopus fibers were used: easily fatigued, type 1 fibers and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 98  شماره 

صفحات  -

تاریخ انتشار 1991